Combining expert knowledge and knowledge automatically acquired from electronic data sources for continued ontology evaluation and improvement
نویسندگان
چکیده
منابع مشابه
Automatically Acquired Domain Knowledge for Ad Hoc Search: Evaluation Results
The automatic acquisition of usable domain knowledge is a challenging issue. Such knowledge can be employed to assist a user in searching a document collection. This can be done by suggesting query modification options based on the knowledge uncovered by analyzing the document collection. We acquire such knowledge by simply exploiting the documents’ markup structure. This gives us a domain mode...
متن کاملCombining Multiple Knowledge Sources for
We predict discourse segment boundaries from linguistic features of utterances, using a corpus of spoken narratives as data. We present two methods for developing seg-mentation algorithms from training data: hand tuning and machine learning. When multiple types of features are used, results approach human performance on an independent test set (both methods), and using cross-validation (machine...
متن کاملOntology acquisition from on-line knowledge sources
Electronic knowledge representation is becoming more and more pervasive both in the form of formal ontologies and less formal reference vocabularies, such as UMLS. The developers of clinical knowledge bases need to reuse these resources. Such reuse requires a new generation of tools for ontology development and management. Medical experts with little or no computer science experience need tools...
متن کاملefl learners collocational knowledge in writing and translation
این مطالعه به بررسی دانش همنشین های دانشجویان زبان انگلیسی فارسی زبان می پردازد. در ابتدا، ارتباط یین دانش عمومی زبان و دانش همنشین های زبان آموزان مورد بررسی قرار می گیرد. دومین هدف این مطالعه بررسی استراتژیهای مورد استفاده در ترجمه همنشین های انگلیسی به فارسی است. در نهایت، خطا های زبان آموزان در تولید و درک همنشین ها مورد آنالیز و بررسی قرار می گیرد. دویست و بیست هفت دانشجوی زبان در این مطال...
Combining Multiple Knowledge Sources for Discourse Segmentation
We predict discourse segment boundaries from linguistic features of utterances, using a corpus of spoken narratives as data. We present two methods for developing segmentation algorithms from training data: hand tuning and machine learning. When multiple types of features are used, results approach human performance on an independent test set (both methods), and using cross-validation (machine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Informatics
سال: 2015
ISSN: 1532-0464
DOI: 10.1016/j.jbi.2015.07.014